K-State Researcher's Work Aids In Study of Plant Stress

Work with lipids helps scientists figure out how to help plants withstand heat and cold stress; attack by pathogens

Published on: Nov 2, 2012

To understand the genetic basis of plant stress, the researchers are studying a broad range of plant stresses, including heat, cold, freezing, salinity, bacterial pathogen infection and fungal pathogen infection. The scientists are also looking at how plants respond to mechanical wounding, such as insect biting or animal grazing.

"We are looking at how these stresses affect plants' ability to continue growing and living," Welti said. "We are assessing how long they can endure stress and assessing their response to stress in relation to their genetic makeup. Genetic changes can affect lipid composition, and we think the lipid changes are signals within and between plants as they respond to stress."

Understanding genetic changes

To assess the changes in lipids, the researchers are measuring lipid compounds. They are also comparing wild-type plants with plants that have altered genes to see how each responds.

"The advantage of doing this in a model plant species is that is it easy to understand genetic changes, which is really important," Welti said.

The collaborative project involves several other researchers, including Jyoti Shah at the University of North Texas; Xuemin Wang at the University of Missouri-St. Louis; and Charmaine Naidoo at Langston University.

The project involves analyzing more than 500 compounds in more than 17,000 plant samples. The new spectrometer will enable the researchers to collect and analyze the data nearly 20 times faster.

"What is taking us 36 months now will take us two months on this new instrument," Welti said.

The new spectrometer can benefit other research organizations with projects aimed at increasing agricultural production and understanding animal and human physiology. Because the center also performs mass spectrometry-based lipid analysis for scientists from all over the world, the spectrometer will also be available to the state, national and international scientific communities for other biochemical research projects.

The center, which was founded in 2003, is renovating space for the new spectrometer, which is expected to help with ongoing research from 15 laboratories in eight U.S. states and three countries. The new spectrometer is also expected to advance the training of numerous postdoctoral trainees, graduate students and undergraduates.